TP 6

Doseamento de açúcares solúveis de uvas (continuação):

✓ Cálculos e análise de resultados

Energia no sangue:

- ✓ Principais funções que requerem energia
- ✓ Glucose como fonte de energia
- ✓ Valores de referência da glucose em várias espécies

Doseamento de glucose em sangue:

- ✓ Método UV (enzimático)
- ✓ Cálculos

TP

Doseamento de açúcares

solúveis:

- ✓ Brix (revisão)
- ✓ Métodos enzimáticos

2. Quantificação de sacarose/ D-glucose/ D-frutose, método UV (cont.)

Tabela 1. Sequência de ensaios a realizar para a quantificação de sacarose, D-glucose e D-frutose, de cada amostra

Procedimento sequencial	Sacaro	ose	Glucose e	e Frutose		
As soluções e amostras são mantidas a 4ºC. Agitar e aquecer cada solução, com as mãos, antes de pipetar.	Branco (célula A1)	Amostra (célula A2)	Branco (célula A3)	Amostra (célula A4)		
Solução 6 +7 tampão pH 4,6 + β-fructosidase	20 μL	20 μL				
Amostra diluída		10 μL		10 μL		
Água destilada	200 μL	190 μL	220 μL	210 μL		
Mix Manter a ≈25°C durante 5 min O tempo pode ser ultrapassado						
Solução 1 tampão pH 7.6	10 μL	10 μL	10 μL	10 μL		
Solução 2 NADP⁺ + ATP	10 μL	10 μL	10 μL	10 μL		
Mix						
Manter a ≈25°C durante 5 min O tempo pode ser ultrapassado Ler a absorvância a 340 nm (A1)						

Mix

D-Glucose (resultante da hidrólise da

D-Glucose (existente no sumo) +

3

TP

Doseamento de açúcares solúveis:

- ✓ Brix (revisão)
- ✓ Métodos enzimáticos

2. Quantificação de sacarose/ D-glucose/ D-frutose, método UV (cont.)

Suspensão 3 Hexocinase + Glucose-6-P Desidrogenase (G6PDH)	2 μL	2 μL	2 μL	2 µL	
Mix Manter a ≈25°C durante 10 min Ler a absorvância a 340 nm (A2) Repetir a leitura, se necessário	D-Glucose (resultant sacarose + existente no + ATP → Glucos Glucose-6-P + NAD Gluconato-6-P +	e da hidrólise da sumo) + Hexocinase se-6-P + ADP PP⁺ + G6PDH → NADPH + H⁺	D-Glucose (existente no sumo) + Hexocinase + ATP → Glucose-6-P + ADP Glucose-6-P + NADP ⁺ + G6PDH → Gluconato-6-P + NADPH + H ⁺		
Cálculos	ΔAbs branco S (cel. 1) = A2 – A1 ΔAbs amostra S (cel. 2) = A2 – A1 ΔAbs D-Glucose Total = ΔAbs amostra sac ΔAbs branco S ΔA Sacarose = ΔAbs D-Glucos		ΔAbs branco G (cel. 1) = A2 – A1 ΔAbs amostra G (cel. 2) = A2 – A1 ΔAbs D-Glucose = ΔAbs amostra G - ΔAbs branco G se Total - ΔAbs D-Glucose		
Suspensão 4 Fosfoglucose isomerase (PGI)			2 μL	2 μL	
Mix Manter a ≈25°C durante 10 min Ler a absorvância a 340 nm Repetir a leitura, se necessário			Frutose-6-Fosfato (existente no sumo) + PGI → Glucose-6-P Glucose-6-P + NADP ⁺ + G6PDH → Gluconato-6-P + NADPH + H ⁺		

TP

Doseamento de açúcares

solúveis:

✓ Brix (revisão)

✓ Métodos enzimáticos

2. Quantificação de sacarose/ D-glucose/ D-frutose, método UV (cont.)

Cálculos		Δ Abs branco F (cel. 1) = A3 – A2 Δ Abs amostra F (cel. 2) = A3 – A2	
		Δ Abs D-Frutose = Δ Abs amostra F - Δ Abs branco F	
	[D-Glucose] g/L = 0,6920 x ∆Abs D-Glucose		
	[D-Sacarose] g/L = 1,315 x ∆Abs Sacarose		
	[D-Frutose] g/L = 0,6978 x ∆Abs D-Frutose		

3. Cálculos e discussão dos resultados

Qual o conteúdo de sacarose, D-glucose e D-frutose em 100 mL de uvas.

Acha expectável que o total de açúcares solúveis (sacarose, glucose e frutose) existente nas uvas obtidas de videiras inoculadas e não inoculadas seja significativamente diferente? E a razão glucose/frutose? Espera que a razão [(glucose + frutose) / sacarose] seja idêntica nas uvas obtidas de videiras inoculadas e não inoculadas? Justifique as suas respostas

TP

Doseamento de açúcares

solúveis:

- ✓ Brix (revisão)
- ✓ Métodos enzimáticos

	•		
term	ine	0	C

Problema

conteúdo de sacarose, D-glucose D-frutose existente em 100 mL de Det amostra diluída, com base nos valores de absorvância (340 nm) apresentados abaixo.

	1	2	3	4
А	Suc	Suc	F+G	F+G
	Blank	Sample	Blank	Sample
В	Suc	Suc	F+G	F+G
	Blank	Sample	Blank	Sample
С	Suc	Suc	F+G	F+G
	Blank	Sample	Blank	Sample

Leitura Abs 2

-	1	2	3	4
A	0,290	1,192	0,288	1,089
D	0,293	1,189	0,284	1,084
Сŀ	0,289	1,180	0,288	1,083

6

Leitura Abs1							
	1	2	3	4			
А	0,280	0,282	0,278	0,280			
D	0,283	0,283	0,278	0,284			
С	0,279	0,280	0,281	0,283			

Leitura Abs 3

	1	2	3	4
А	0,290	1,192	0,288	1,789
D	0,293	1,189	0,286	1,774
С	0,289	1,180	0,288	1,783

TP 6

Energia no sangue

Os eritrócitos necessitam de energia para que funções celulares?

Energia no sangue

Os eritrócitos necessitam de energia para manter uma série de funções celulares vitais, que incluem:

(1) manutenção da glicólise;

 (2) manutenção do gradiente eletrolítico entre o plasma e o citoplasma eritrocitário através da atividade de bombas de membrana acionadas por trifosfato de adenosina (ATP);

(3) síntese de glutationa e outros metabolitos;

(4) metabolismo da purina e pirimidina;

(5) manutenção do ferro da hemoglobina no seu estado funcional, reduzido e ferroso;
(6) proteção das enzimas metabólicas, hemoglobina e proteínas de membrana contra a desnaturação oxidativa;

(7) preservação da assimetria fosfolipídica da membrana.

Figure 1. Conversão anaeróbia de glicose pela via de Embden-Meyerhof para geração e armazenamento de ATP em eritrócitos, e o *bypass* glicolítico exclusivo para a produção de 2,3-bifosfoglicerato (2,3-DPG), o *shunt* Rapoport-Luebering. Esse *shunt* contorna a etapa da fosfoglicerato cinase (PGK) e é responsável pela síntese e regulação dos níveis de 2,3-DPG que diminuem a afinidade da hemoglobina para o oxigênio. Além disso, o 2,3-DPG constitui um tampão de energia.

van Wijk R, van Solinge WW. The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood. 2005 Dec 15;106(13):4034-42. doi: 10.1182/blood-2005-04-1622

TP 6

Energia do sangue

Valores de referência de glucose no sangue em várias espécies

Energia no sangue

Valores por 100 g de parte edível

_{Cod} Nome do alimento	Energia	Energia	Lípidos	Hidr. de C	Açúcares	Oligossacárid	Amido	Proteínas
	[kcal]	[kJ]	[g]	[g]	[g]	[g]	[g]	[g]
1223 Sangue de porco, cru	72	304	0,4	0,4	0,1	0	0	16,6

https://portfir-insa.min-saude.pt/ Atualizado em 05-05-2023

Tabela 9: Níveis de glicose (mg/dL) em algumas espécies de aves.

Avestruz	Falcão	Pombo	Papagaio cinza	Cacatua	Arara	Galinha
187,2-246,6	297-396	232,2-369	205,2-289	230,4-316,8	216-322,2	130-270

Em seres humanos os valores de referência em glucose no sangue são 70 a 110 mg/dL

TP 6

Doseamento de D-glucose

2. Quantificação de D-glucose do sangue de galinha, método UV (cont.)

Sabendo os limites de deteção do método e os valores de referência da amostra, calcule uma diluição adequada para proceder ao doseamento da D-glucose.

- Proceda à diluição, utilizando uma pipeta automática e um balão volumétrico adequados para perfazer o volume final pretendido.
- > Agite por inversão.
- ➢ Recolha ≈ 1 mL para um microtubo Eppendorf.

- Numa microplaca proceda aos ensaios para a quantificação da D-glucose de uma dada amostra de sangue diluída, em triplicado.
- Efectue os cálculos
- Analise e discuta os resultados obtidos

2. Quantificação de D-glucose do sangue de galinha , método UV

D-Glucose + ATP
$$\longrightarrow$$
 Glucose-6-P (G6P) + ADP

 $G6P + NADP^+ \xrightarrow{G6PDH} D-Gluconato-6-P + NADPH + H^+$

The D-glucose concentration is determined before and after hydrolysis of sucrose by β-fructosidase. The sucrose content is calculated in the sample succession of the second state of the

This **Spethodials** pecific for D-fructose and D-glucose. Since β-fructosidase also hydrolyses low molecular weight fructans (e.g method, as all others, is not totally specific for sucrose. Some indication of the presence of fructo-oligosaccharides will be given

TP

2. Quantificação de D-glucose do sangue de galinha , método UV

Tabela 1. Sequência de ensaios a realizar para a quantificação de sacarose, D-glucose e D-frutose, de cada amostra

Procedimento sequencial	-	Glucose e Frutose	
As soluções e amostras são mantidas a 4ºC. Agitar e aquecer cada solução, com as mãos, antes de pipetar.		Branco (célula A3)	Amostra (célula A4)
	_		
Amostra diluída			10 μL
Água destilada		220 μL	210 μL
Solução 1 tampão pH 7.6		10 μL	10 μL
Solução 2 NADP⁺ + ATP		10 μL	10 μL
	Mix Manter a ≈25°C durante 5 min O tempo pode ser ultrapassado Ler a absorvância a 340 nm (A1)		

Mix			

D-Glucose (resultante da hidrólise da

D-Glucose (existente no sumo) +

TP

2. Quantificação de D-glucose do sangue de galinha, método UV (cont.)

Suspensão 3 Hexocinase + Glucose-6-P Desidrogenase (G6PDH)	2 μL	2 µL
Mix Manter a ≈25°C durante 10 min Ler a absorvância a 340 nm (A2) Repetir a leitura, se necessário	D-Glucose (existente no sumo) + Hexocinase + ATP → Glucose-6-P + ADP Glucose-6-P + NADP ⁺ + G6PDH → Gluconato-6-P + NADPH + H ⁺	
Cálculos	Δ Abs branco G (cel. 1) = A2 – A1 Δ Abs amostra G (cel. 2) = A2 – A1 Δ Abs D-Glucose = Δ Abs amostra G	

Bom trabalho 😊

TP 5

Bibliografia

D-Glucose HK, UV method

Catalogue number: AK00031, 110 tests (manual) / 1100 tests (microplate)

BLOOD, 15 DECEMBER 2005 • VOLUME 106, NUMBER 13

Review article

The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis

Richard van Wijk and Wouter W. van Solinge